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Abstract

Continuous wave electron paramagnetic resonance imaging (EPRI) of living biological systems requires rapid acquisition and
visualization of free radical images. In the commonly used multiple-stage back-projection image reconstruction algorithm, the
EPR image cannot be reconstructed until a complete set of projections is collected. If the data acquisition is incomplete, the previ-
ously acquired incomplete data set is no longer useful. In this work, a 3-dimensional progressive EPRI technique was implemented
based on inverse Radon transform in which a 3-dimensional EPR image is acquired and reconstructed gradually from low resolution
to high resolution. An adaptive data acquisition strategy is proposed to determine the significance of projections and acquire them in
an order from the most significant to the least significant. The image acquisition can be terminated at any time if further collection of
projections does not improve the image resolution distinctly, providing flexibility to trade image quality with imaging time. The pro-
gressive imaging technique was validated using computer simulations as well as imaging experiments. The adaptive acquisition uses
50–70% less projections as compared to the regular acquisition. In conclusion, adaptive data acquisition with progressive image
reconstruction should be very useful for the accelerated acquisition and visualization of free radical distribution.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In the last two decades, electron paramagnetic reso-
nance imaging (EPRI) has made rapid progress [1–3]
and demonstrated its unique usefulness in many
branches of science including biology and medicine [4–
12]. Several review articles on the development of EPRI
methods and their application to biological systems have
appeared in recent years [3,13–15]. While the time-do-
main EPRI technique has emerged recently with the
advantage of significantly reduced imaging time
[16,17], the continuous wave (CW) EPRI technique still
dominates current applications because of its higher sen-
sitivity and applicability to a large variety of spin probes
of varied linewidths [17]. The filtered back-projection
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(FBP) method is commonly used for image reconstruc-
tion in CW EPRI in which an n-dimensional EPR image
is reconstructed through (n � 1)-stage back-projection
operations [2,18,19]. For instance, a 3-dimensional
EPR image is reconstructed in two stages, with each
stage consisting of the reconstruction of a set of 2-di-
mensional images. The multi-stage reconstruction algo-
rithm is easy to implement and very fast in
computation speed. The use of low-computation ap-
proaches was important when advanced computational
facilities (speed and memory) were not available. De-
spite its low requirements for computational facilities,
the multi-stage image reconstruction algorithm has
several limitations. First, it requires an equal-angle
increment in stepping the gradient vector. The uniform
angular sampling of the object space causes a non-
uniform gradient density distribution on the surface of
the object which considerably decreases the data
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acquisition efficiency [20,21]. Second, the image recon-
struction can be performed only after all the projections
are collected. During the data acquisition period, how-
ever, no information is available about the image. If
the data acquisition terminates due to unexpected rea-
sons such as a change in animal physiology, position,
or environment, the previously acquired incomplete
data set is no longer useful. Additionally, all the projec-
tions are by default assigned with equal importance and
acquired in a nested-loop order. This content-insensitive
acquisition method is not optimal in data acquisition
time and/or image resolution [22].

In this work, a novel 3-dimensional progressive EPRI
method with content-sensitive acquisition was devel-
oped. The inverse Radon transform [21,23] was imple-
mented and applied to reconstruct EPR images from
projections in a single stage, in which all the filtered pro-
jections are back-projected directly on to the 3-dimen-
sional goal image. Since the image reconstruction can
be done during the data acquisition process, it enables
progressive reconstruction and visualization of the
EPR image. The uniform gradient scanning approach
[20,21] was adapted to replace the uniform angular sam-
pling (non-uniform gradient scanning) and it was shown
the data acquisition efficiency could be considerably in-
creased. We proposed an adaptive data acquisition
strategy in which all the projections are acquired in a
sorted order according to their significance values de-
rived from the previously acquired projections. The pro-
posed progressive imaging technique with adaptive
projection acquisition was implemented and tested
through simulations and imaging experiments. Com-
pared with the regular EPRI data acquisition, marked
performance improvements have been realized.
2. Theory

2.1. Progressive image reconstruction using inverse Radon

transform

The Radon transform of a 3-dimensional object
f (x,y,z) is expressed by the following equation [21,23].
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Z 1
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The inverse Radon transform of Eq. (1) is given by
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Refer to Fig. 1 for a definition of projection geometry.
Image reconstruction in 3-dimensional EPRI is mathe-
matically a 3-dimensional inverse Radon transform de-
scried above but operated in digital domain.
Therefore, the second partial derivative in the filtering
operation, Eq. (3), can be approximated using a three-
point digital filter [21], as

p̂ðsi; aj; hkÞ ¼ � 1

8p2
2pðsi; aj; hkÞ � pðsi�1; aj; hkÞ
�
�pðsiþ1; aj; hkÞ

�
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where 0 6 i 6 I � 1, 0 6 j 6 J � 1, and 0 6 k 6 K � 1. I
is the number of data points for each projection. J and K
are the sample number of the azimuth angle a and eleva-
tion angle h, respectively. Similar to Eq. (4), the integra-
tion in Eq. (2) is approximated using summation [21],

f̂ ðx; y; zÞ ¼ 2p2
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p̂ðx sin hk cos aj

þ y sin hk sin aj þ z cos hk; aj; hkÞ: ð5Þ

Eq. (5) states that, given the sample number of a and h as J
andK (then the total projection number as JK), each pro-
jection is reconstructed independent of others to obtain a
3-dimensional ‘‘basis’’ image. All the JK ‘‘basis’’ images
are accumulated to obtain the final reconstruction result.
Apparently, in the beginning, when only a few projections
are acquired, a few ‘‘basis’’ images will be accumulated to
obtain a low-resolution image. As more projections are
collected, more ‘‘basis’’ images will be added to the low-
resolution image to obtain a high-resolution image. Thus,
a progressive image acquisition scheme is implemented
based on the inverse Radon transform.

2.2. Uniform magnetic field gradient scanning

In Eq. (5), a and h are sampled uniformly, i.e.,
aj = j2p/J and hk = kp/2K + p/4K. This is required in
principle by the two-stage back-projection image recon-
struction algorithm (otherwise interpolation is needed).
However, the equal-increment of a and h will result in
a non-uniform gradient density distribution over the
surface of the 3-dimensional object [20,21]. As shown
in Fig. 2A, the gradient density near the pole (h close
to 0) is much higher than that near the equator (h close
to p/2). As will be seen later, the over-sampling near the
pole seriously decreases the data acquisition efficiency.
In this study, since the single stage image reconstruction
algorithm is used, we will be able to implement a uni-
form gradient scanning path to improve the data acqui-
sition efficiency, as reported previously.

In the uniform gradient scanning scheme, the eleva-
tion angle h is still uniformly sampled but the sampling
of the azimuth angle a is different: the increment step
size of a is calculated according to the current elevation
angle hk. The number of samples for a at hk is



Fig. 1. Image reconstruction using Radon transform. A: Acquisition of projections in 3-dimensional EPRI. Each point of the projection p (s,h,a) is a
plane integral of the object f (x,y,z) on the plane defined by x sinhcosa + y sinh sina + zcosh = s. (B) 3-dimensional image reconstruction using
inverse Radon transform. Each point of the filtered projection p̂ðs; h; aÞ is back-projected on to a 2-dimensional plane defined by
x sinhcosa + y sinh sina + zcosh = s. Such a plane is a slice of the 3-dimensional object being reconstructed. Thus, the entire projection (after
filtering) is directly back-projected to obtain a 3-dimensional ‘‘basis’’ image. All the ‘‘basis’’ images are accumulated to obtain the final reconstruction
result. This method is also called single stage image reconstruction.

Fig. 2. Two different gradient scanning modes. (A) Non-uniform
gradient scanning mode (also called uniform angular sampling mode).
In this mode, the elevation angle h and azimuth angle a are uniformly
sampled. The gradient density near the pole is much higher than that
near the equator. The over-sampling near the pole area seriously
decreases the data acquisition efficiency. (B) Uniform gradient
scanning mode. In this mode, only the elevation angle h is uniformly
sampled. The number of samples for a is determined by Eq. (6). The
gradient density is approximately uniform and the data acquisition
efficiency is increased by avoiding over-sampling.
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Jk ¼ round ðJ sin hkÞ: ð6Þ
Consequently, Eq. (5) is rewritten as

f ðx; y; zÞ ¼ 2p2
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Obviously, when hk = p/2, the number of samples for a
reaches the maximum value, i.e., J, and when hk fi 0, it
reaches the minimum value. At other hk, the number of
samples for a is less than J. In this way, the gradient
density is uniformly distributed and the over-sampling
near the pole is avoided, as shown in Fig. 2B. The
improvement of data acquisition efficiency by the uni-
form gradient scanning can be estimated as

g ¼ 1�
PK�1

k¼0 Jk

J � K : ð8Þ

In the above estimation, it is assumed that the signal-to-
noise ratio of the projections is high enough so that the
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signal averaging through over-sampling is not necessary.
In a typical case of J = 64 and K = 16 (equivalent as
J = 32 and K = 32 for 180�–180� regular 3-dimensional
EPRI data acquisition), 660 projections, instead of
1024, need to be acquired. Thus, the data acquisition
efficiency is increased by one-third by using the uniform
gradient scanning mode.
3. Adaptive data acquisition

So far, in both single-stage and two-stage image
reconstruction algorithms, all the projections are ac-
quired in a nested-loop order spanning the entire object
space. The acquisition process is blind to the nature of
the sample structure. While this conservative data col-
lection strategy is unbiased and suitable for arbitrary
sample structure, it is not optimized for objects with
non-uniform structures [22]. If the spins are concen-
trated only in some locations within the object, not all
the projections are equally important in image recon-
struction. For example, if the spins are distributed as a
narrow-line strip-shape, then the projection acquired
with the gradient vector parallel to the long axis of the
strip carries relatively more information about the spin
distribution than the projection acquired with the gradi-
ent perpendicular to the long axis because the former
will have a much wider band width. The information
content of each projection (or the significance of each
projection) will determine the contribution from the cur-
rent projection to the reconstruction result and therefore
the convergence speed of the reconstruction error. In the
following, we will develop an adaptive data acquisition
algorithm capable of optimizing the data collection time
and the image resolution.

Placidi et al. [22] proposed an adaptive technique in
which the ‘‘entropy’’ was used tomeasure the information
content of projections and to determine their acquisition
order. Their preliminary results of 2-dimensional EPRI
experiments showed that about 30% of the projections
can be saved using the adaptive algorithm compared with
the regular nested-loop data acquisition method. While
the ‘‘entropy’’ is an effective measure of projection infor-
mation content, it is not intuitive how the measured ‘‘en-
tropy’’ of a projection is directly related to the image
reconstruction error. Recall that in the 3-dimensional sin-
gle stage image reconstruction algorithm, every value of a
filtered projection is back-projected onto a 2-dimensional
plane which is a slice of the 3-dimensional goal image
being reconstructed (Fig. 1B). The larger the amplitude
of the filtered projection, the bigger is that projection�s
contribution to the goal image. For example, assuming
that there are two filtered projections whose values are
100 and 10, respectively, then a 3-dimensional ‘‘basis’’ im-
age of value 100 will be added to the reconstruction result
after the first projection is back-projected. When the sec-
ond projection is back-projected, however, a constant
3-dimensional ‘‘basis’’ image of value 10 will be added
to the reconstructed result. Obviously, the first projection
will decrease the reconstruction errormuch faster than the
second one if the mean square error (MSE) criterion is
used. Therefore, we can conclude that the first projection
is more important and should be acquired prior to the
second one. Based on the above analysis, in this work,
the mean-square amplitude of the filtered projection is
used to evaluate the significance for each projection, as

kj;k ¼
1
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i¼0

p̂2ðsi; aj; hkÞ: ð9Þ

Since in experiments a projection is not available until it
is acquired, a linear interpolation method is used to pre-
dict the significance value from the previously acquired
projections.

We propose the following algorithm to acquire pro-
jections in an order according to their significance val-
ues: (i) Given the imaging parameters, calculate the
uniform gradient scanning path (see Fig. 2B). (ii) Ac-
quire a pre-defined number of projections, say, 10 per-
cent of the entire projections. These projections will be
used as ‘‘seeds’’ to determine the acquisition order for
other projections through prediction, as in step (iii).
To shorten the time within which all the important pro-
jections will be covered, these ‘‘seed’’ projections should
be distributed evenly in the pre-calculated gradient scan-
ning path. (iii) Calculate the significance values for all
the acquired projections and predict the significance val-
ues for all other uncollected projections using linear
interpolation. Acquire the projection with the highest
significance value in the prediction. (iv) Filter and
back-project the projection acquired in step (iii) and up-
date the reconstruction result and image display. (v) Re-
peat steps (iii) and (iv) until all the projections are
collected or the data acquisition is stopped.
4. Results

4.1. Simulation results

The progressive image reconstruction algorithm and
the adaptive acquisition method were first tested by sim-
ulation on two different digital phantoms (64 · 64 · 64).
The imaging parameters were chosen to simulate EPRI
experiments at 300 MHz. All the projections were calcu-
lated from the phantom using our EPRI simulation pro-
gram written in Matlab language. The calculated
projections were reconstructed to obtain the goal image
through either the single stage or the two-stage image
reconstruction algorithm. The imaging parameters in
the simulation were as follows: central field, 10 mT;
sweep width, 0.75 mT; data points, 128; field of view
(FOV), 50 · 50 · 50 mm3. The Lorentzian absorption
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line shape was used with full-width at half-height
(FWHH) as 0.02 mT. The gradient strength was
15 mT/m. No deconvolution was performed. The image
resolution was approximately 1.3 mm [24]. The uniform
gradient scanning strategy was used in the simulation
which saved about one third of data acquisition time
as discussed above. For each phantom, both the regular
acquisition (in a nested-loop order) and the adaptive
acquisition were tested.

4.2. ‘‘Tubes’’ phantom

The ‘‘Tubes’’ phantom consisted of a bunch of tubes
with diameter of either 3.9 or 6.2 mm and length of
about 30 mm. Two tubes have been intentionally made
Fig. 3. Demonstration of regular versus progressive image reconstruction u
image acquisition are described in the text. (A) Image reconstruction results us
order). The reconstructed images converged slowly to the original phantom as
adaptive projection acquisition algorithm. Sixty-six projections were pre-acqu
the most important to the least important. The convergence speed of the rec
smaller than the others for identification of orientation.
Fig. 3A shows the progressive image reconstruction re-
sults as the projections were acquired in a nested-loop
order. The original digital phantom is also shown in
the same figure. When a few projections were collected,
a low resolution image was obtained. As more projec-
tions were accumulated, the image resolution increased
correspondingly. Since all the projections were treated
with equal importance and, therefore, acquired in a nest-
ed-loop order, the reconstructed images converged very
slowly to the original phantom. Fig. 3B is the recon-
struction results of the same phantom but acquired
using the adaptive acquisition algorithm. In the adaptive
acquisition, 66 projections were acquired as ‘‘seeds,’’
which were uniformly distributed in the predefined gra-
sing a simulated ‘‘Tubes’’ phantom. The details of the phantom and
ing regular data acquisition (projections were acquired in a nested-loop
more projections were collected. (B) Image reconstruction results using
ired as ‘‘seeds’’ and all other projections were acquired in an order from
onstructed images is faster than that in the regular data acquisition.



Fig. 4. Significance distribution of projections and reconstruction
error. (A) and (B) Significance distribution of projections. The
significance of a projection (also in Figs. 6 and 8) is defined in Eq.
(9) as the mean-square amplitude of the projection after filtering. In the
regular data acquisition, all the projections were acquired in a nested-
loop order. With this phantom, all the important projections were
actually located at the end. In the adaptive acquisition, all the
projections (except the first 10%) were acquired according to their
significance values, from the most important to the least important.
The adaptive algorithm was able to determine all the most important
projections and acquire them within the first 250 projections. (C)
Reconstruction error. In the regular data acquisition, since the
important projections were located at the end, the reconstruction
error converges very slowly. With the adaptive algorithm, all the
important projections were identified and acquired prior to the less
important projections. The construction error converges roughly at the
number of 300. The improvement of the data acquisition efficiency is
clearly seen.
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dient scanning path. The algorithm discussed in the The-
ory section was used to determine the projection with
the largest significance value. So, all the remaining
90% of the projections were acquired in an order from
the most important to the least important. Fig. 3B
clearly shows that the data acquisition efficiency was sig-
nificantly improved by the adaptive acquisition algo-
rithm. For example, after only 200 projections were
acquired, the image quality was reasonably good. It
was further improved after 300 projections were ac-
quired. In both cases, the images with adaptive acquisi-
tion were much better than the corresponding ones with
the same number of projections acquired using the reg-
ular data acquisition. Fig. 4 shows the significance dis-
tribution of the projections and the reconstruction
error curve. From Fig. 4A, it is very interesting to note
that, with the ‘‘Tubes’’ phantom, almost all the impor-
tant projections are located at the end (projection index
number >500) if the projections were acquired in a nest-
ed-loop order. Thus, the reconstruction error converges
very slowly in the regular acquisition (see Fig. 4C). On
the contrast, the adaptive data acquisition scheme
worked very well and was able to identify and acquire
all the important projections within the first 250 projec-
tions (Fig. 4B). Fig. 4 also clearly shows that the signif-
icance distribution of the projections, given in Eq. (9), is
consistent with the reconstruction error curve. For
example, with the adaptive acquisition, the significance
distribution curve shows that there are no important
projections with the projection index number >300. This
is clearly supported by the reconstruction error curve
which converges at 300. Thus, with the ‘‘Tubes’’ phan-
tom, at most 70% of the projections could be saved
using the adaptive acquisition algorithm combined with
the uniform gradient scanning strategy.

4.3. ‘‘EPR’’ phantom

A second phantom made up of three letters ‘‘E,’’ ‘‘P,’’
and ‘‘R’’ was also tested in the simulation. The image
reconstruction results from the regular and adaptive
acquisitions are shown in Figs. 5A and B, respectively.
The significance distribution of the projections and the
reconstruction error are shown in Figs. 6A–C, respec-
tively. Similar to Fig. 3, the progressive image recon-
struction process is demonstrated in Fig. 5 in which
the convergence speed of the reconstruction results has
been remarkably accelerated by the adaptive acquisition
algorithm. Since the ‘‘EPR’’ phantom has more complex
structures throughout than the ‘‘Tubes’’ phantom, its
important projections are located in a wide range (basi-
cally at the both end sides, see Fig. 6A), rather than only
at the end (Fig. 4A). However, the proposed adaptive
acquisition algorithm was still able to locate all the
most important projections and acquire them within
the first 300 projections. From the reconstruction error
curve (Fig. 6C), it can be seen that after acquiring 400
projections, the reconstruction error curve converges.
Thus, with the ‘‘EPR’’ phantom, at most 60% of projec-
tions could be saved using the adaptive acquisition algo-
rithm combined with the uniform gradient scanning
strategy.



Fig. 5. Demonstration of regular versus adaptive acquisition methods using a simulated ‘‘EPR’’ phantom. (A) Image reconstruction results using
regular data acquisition. A progressive image reconstruction process is clearly demonstrated but the reconstructed images converged slowly to the
original phantom in regular acquisition. (B) Image reconstruction results using adaptive acquisition algorithm. Ten percent of projections (66
projections) were pre-acquired as ‘‘seeds’’ and all other projections were acquired in an order from the most important to the least important. The
convergence speed of the reconstructed images is faster in adaptive data acquisition than in the regular data acquisition.
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4.4. Experimental phantom

The proposed adaptive acquisition algorithm was
also tested by imaging a phantom constructed by
machining the letters ‘‘E,’’ ‘‘P,’’ and ‘‘R’’ on three plastic
bricks (35 · 27 mm2). Each letter was filled with DPPH
(2,2-diphenyl-1-picrylhydrazyl) powder diluted five
times with Agar (Aldrich Chemical). The imaging mea-
surement was performed using our home-built 300 MHz
EPRI system [25]. Further detailed information about
the system will be reported in the future. The imaging
parameters used for both the regular and adaptive
acquisition were as follows: scan width, 2.4 mT; FOV,
60 · 60 · 60 mm3; modulation amplitude, 0.05 mT, scan
time, 3.9 s; and time constant, 10 ms. The peak–peak
line width of the DPPH spectrum measured at
300 MHz was 0.12 mT. The gradient strength was
40 mT/m. The image resolution was calculated to be
5.2 mm before deconvolution and 2 mm [24] after the
automatic deconvolution algorithm was applied [26].

The imaging results from the regular and adaptive
data acquisitions are shown in Fig. 7. The significance
distribution of projections and the reconstruction error
curve are shown in Fig. 8. A 3-dimensional regular
EPR image was acquired (32 · 32 = 1024 projections
with uniform angle sampling) as the reference image.
Fig. 7 shows that the imaging results from the adaptive
acquisition algorithm converged much faster than that
from the regular data acquisition. Figs. 8A and B are
consistent with the simulation results (see Figs. 5A and
B) except that there are a few important projections dis-
tributed in the middle. Because of the complexity of the
phantom structure as well as the noise induced during
data acquisition, the adaptive acquisition algorithm



Fig. 6. Significance distribution of projections and reconstruction
error. (A) and (B) Significance distribution of projections. The most
significant projections are located at both ends. The adaptive
algorithm was able to determine all the most important projections
and acquire them within the first 300 projections. (C) Reconstruction
error. In the regular data acquisition, since the important projections
were located at both ends, the reconstruction error converges very
slowly. With the adaptive algorithm, all the important projections were
identified and acquired prior to the less important projections, thus,
the construction error converges fast (roughly at the number of 400).
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took longer time in the experiments than in simulation
(although 20% projections were pre-acquired as ‘‘seeds’’
in the experiment) to determine and acquire all the
important projections. Therefore, the reconstruction er-
ror (Fig. 8C) converges at 500 projections, demonstrat-
ing that 50% of projections could be saved using the
adaptive acquisition algorithm combined with the uni-
form gradient scanning strategy.
5. Discussion

While the two-stage image reconstruction algorithm is
fast in computational speed, it requires the complete set of
projections to be collected before the image reconstruc-
tion can proceed. On the other hand, the single-stage im-
age reconstruction algorithm allows progressive image
reconstruction in which the back-projection operation is
done ‘‘on-the-fly,’’ but it involves extensive computation.
In the following, we will compare the computation
amount in both algorithms. Assume 32 · 32 = 1024 pro-
jections are acquired and the goal image size is
64 · 64 · 64. With the two-stage image reconstruction
algorithm, since each projection is back-projected to a
2-dimensional 64 · 64 image, the number of back-projec-
tion operations is 32 · 32 · 64 · 64 + 32 · 64 · 64 · 64,
assuming that the projection number is doubled from
32 · 32 to 32 · 64 after the first stage back-projection
operation. In the single-stage image reconstruction algo-
rithm, however, each projection is directly back-projected
to a 3-dimensional 64 · 64 · 64 ‘‘basis’’ image, so the
number of back-projection operations is 32 · 32 · 64 ·
64 · 64. The computational amount in the single stage im-
age reconstruction algorithm is therefore approximately
20 times higher than that in the two-stage image recon-
struction algorithm, given the above reconstruction
parameters. The 20-fold computational efficiency was
critical when the fast-speed computation facilities such
as fast personal computers (PCs) were not available in
the past. Fortunately, in recent years, the performance
of PCs has been improved dramatically. For example,
the CPU speed has been increased by about 30 times be-
tween 1993 (Pentium 150 MHz, 20 millions of additions
per second) and 2004 (Pentium IV 3.2 GHz, 680 millions
of additions per second). This dramatic increase of CPU
speed offers us the opportunity to readily apply the single
stage image reconstruction algorithm for EPRI. We have
demonstrated that the reconstruction of a 3-dimensional
image from 660 projections using single stage reconstruc-
tion algorithm took only 2.5 min (Matlab 6.1 on Pentium
4 with 3.06 GHz CPU). However, the speed can be accel-
erated by one order ofmagnitude by transferring theMat-
lab codes to C++ implementation. Thus, it is very
practical to implement and apply the proposed method
for EPRI applications.

We have shown that about 50–70% of projection
acquisition time has been saved with negligible lose of im-
age quality in both simulations and experiments. The in-
crease of data acquisition efficiency is benefited from the
following two aspects. First, the uniform gradient scan-
ning strategy improves the data acquisition efficiency
(typically by one-third) by avoiding over-sampling. It
should be noted that the uniform gradient scanning may
result in different image quality, depending on the sig-
nal-to-noise ratio of the projections. In both our simula-
tion and experiments, the signal-to-noise ratio of the
projections was high enough so that the reduction of pro-
jection number by avoiding over-sampling (from 1024 to
660, typically) did not cause noticeable decrease of image
quality. Second, the adaptive acquisition algorithm is
capable of preserving all the important projections and



Fig. 7. Imaging results of the ‘‘EPR’’ phantom. The imaging measurements were performed using a home-built 300 MHz EPRI system. (A) Image
reconstruction results using regular data acquisition. A progressive image reconstruction process is clearly demonstrated but the reconstructed images
converged slowly to the original phantom. (B) Image reconstruction results using adaptive projection acquisition algorithm. Twenty percent of
projections (132 projections) were pre-acquired as ‘‘seeds’’ and all other projections were acquired in an order from the most important to the least
important. The convergence speed of the reconstructed images is faster in adaptive data acquisition than in regular data acquisition.
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discarding all other less important ones. As previously
discussed, when a sample is non-uniformly distributed,
the significance of projection varies one from the other.
In this case, the proposed adaptive acquisition algorithm
is able to evaluate all the projections and determine all the
important projections first. The data acquisition time is
therefore saved by acquiring all the important projections
and skipping all other less important ones.However, if the
sample has a uniform distribution, each projection will
have equal importance. Then both regular and adaptive
algorithmshave to acquire all the projections andnogains
will be achieved by the proposed adaptive algorithm.
6. Conclusion

We implemented a 3-dimensional progressive EPR
imaging technique based on the inverse Radon trans-
form. We proposed an adaptive data acquisition strat-
egy in which all the projections are sorted according to
their predicted significance and acquired in an order
from the most important to the least important. The sig-
nificance of a projection is measured as the mean-square
amplitude of the filtered projection. Since it is derived
from the filtered projections, it correlates with the recon-
struction image quality. The imaging process can be ter-
minated at any time if further collection of projections
does not improve the image resolution distinctly or the
acquisition can not continue due to hardware or other
problems. The uniform gradient scanning scheme was
also adapted to improve the data acquisition efficiency
by avoiding over-sampling as occurred in the conven-
tional EPRI experiments. The validation of the pro-
posed scheme was tested by simulations and imaging
experiments. Compared with the regular EPRI data
acquisition, 50–70% data acquisition time could be



Fig. 8. Significance distribution of projections and reconstruction
error. (A) and (B) Significance distribution of projections. The real
‘‘EPR’’ phantom has more structures than the simulated phantoms. Its
important projections were located almost everywhere. The adaptive
algorithm determined and acquired all the most important projections
within the first 410 projections. (C) Reconstruction error. In the
regular data acquisition, since the important projections were located
more evenly, the reconstruction error converges very slowly. With the
adaptive algorithm, all the important projections were identified and
acquired prior to the less important projections, thus, the construction
error converges fast (roughly at the number of 500).
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saved with negligible loss of image quality. This tech-
nique should be very useful for accelerated acquisition
and visualization of free radical distribution.
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